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Introduction

In order to predict the aerodynamic characteristics of airfoils operating at low Re)_nolds

numbers (R < 5.0 x 105), it is necessary to accurately account for the effects of laminar (tran-

sitional) separation bubbles. I In general, the greatest difficulty comes about when attempting

to determine the increase in profile drag that results from the presence of separation bubbles.

Because the drag on an airfoil depends on the trailing-edge value of the momentum thickness, 2

the increase in drag that accompanies separation bubb}es is primarily due to the rapid increase

in momentum thickness that occurs in a bubble compared to the much smaller growth that

occurs with a natural transition from a laminar to a turbulent boundary layer. As a conse-

quence, when a separation bubble is the actual mechanism of transition, methods that assume

transition occurs at the laminar separation point and use the boundary-layer properties at that

point as the initial conditions for the turbulent boundary-layer calculations usually underpredict

the drag. Thus, to successfully determine the increase in drag on an airfoil due to separation

bubbles, it is necessary to accurately model the development of the boundary layer through the
bubble.

While a number of empirically based separation bubble models have been introduced in

the past, some of which are detailed in Ref. 3, the majority of these assume that the bubble

development is fully predictable from upstream conditions. More recently, much more accurate

predictions have been made possible using viscous/inviscid interaction approaches such as those

described in l_efs. 4-6. By such means, the influence of the bubble on the entire velocity dis-

tribution over the airfoil is accounted for globally by iterating between the invisc]d flow and

boundary-layer solutions. While not of much concern in predicting the aerodynamic charac-

teristics of a single airfoil, the amount of computational time required for such boundary-layer

iteration methods becomes consequential in the case of airfoil design for which the number of

analysis cases required can become very large.

One way of accounting for laminar separation bubbles in airfoi} design is the bubble analog

used in the design and analysis program of Eppler and Somers. 7'8 In this method, the designer

is warned about the presence of separation bubbles which might unacceptably increase the drag

over that which is predicted assuming that transition occurs at laminar separation. Although

this approach has proven very useful in designing airfoils for low Reynolds number applications,

it would be advantageous to have predictions of section properties which more fully account

for the presence of laminar separation bubbles provided this can be done without significantly

increasing the computational time. Toward this end, a locally interactive separation bubble

model has been developed and incorporated into the Eppler and Somers program. Although

unable to account for strong interactions such as the large reduction in suction peak sometimes

caused by leading-edge bubbles, it is able to predict the increase in drag and the local alteration
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of the airfoil pressure dis:ribution that is caused by bubbles occurring in the operational range

which is of most interest.

To fully determine the behavior and hnfluence of a laminar separation bubble, it is necessary

to accurately predict the shear-layer development in the regions of the laminar separation bubble

indicated in Fig. 1. The formation of a bubble is initiatated at point S, shown in the figure, by

the laminar boundary layer separating from the airfoil surface. Using integral boundary-layer

methods, this point can be determined with the accuracy needed for airfoil design work. Once

separated, the free shear layer development must be tracked and the transition from laminar to

turbulent flow, which occurs near the point T, predicted. As shown in Fig. 2, the separation

bubble causes a plateau to form in the velocity distribution between the points corresponding

to laminar separation and the end of the transition region. From this point, the turbulent part

of the bubble encompasses a pressure recovery region which leads to the reattachment of the

turbulent shear layer at point ,_. As an additional pressure recovery always occurs downstream

of a reattachment point, the velocity distribution corresponding to the highly non-equilibrium,

relaxing boundary layer downstream of reattachment "undershoots" the inviscid distribution.

Eventually, the turbulent boundary layer reaches its fully-developed state and the undershoot

region merge_ smoothly from below with the invisc]d velocity distribution. Clearly it is possible,

especially at low Reynolds numbers, that the turbulent boundary layer never reaches equilibrium

before the trailing edge of the airfoil.
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Fig. 1: Sectional view of a two-dimensional short laminar separation bubble.
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Influence of a short laminar separation bubble on the velocity distri-

bution over an airfoil.

Overview of Procedure for Modelling Laminar Separation Bubbles

Efforts to develop a method able to predict the effects of a laminar separation bubble which

interacts weakly with the inviscid flow, the so-called short bubb]e, began with the incorporation

of the classical empirical model of Horton, g modified according to the suggestions of Roberts 1°

and Schmidt, 3 into the Eppler and Somers program. Because they are formulated in terms

of integral boundary-layer properties, bubble models such as these are well suited to the inte-

gral boundary-layer analysis employed by Eppler. Specifically, this method makes use of the

momentum and energy integral equations,

d_2 c/ _ (HI_ + 2)_2 dUd-V= T y (1)

d_3 _s dU
d--7= - 3-E d--; (e)

along with the appropriate closure relations. 11

Using the empirical separation bubble model noted, the sensitivity of the boundary-layer

development and drag prediction to various parts of the bubble was explored. As detailed

in Refs. 12 and 13, and reported by other researchers as well, TM it is found that the bubble

development for such models is very sensitive to small variations in the governing parameters.

Thus, although generally accurate for predicting features of the bubble to within twenty percent,

empLrical bubble models based only on upstream conditions are not able of providing acceptable

drag predictions. Consequently, it was concluded that the accuracy desired could be achieved

only by a model which accounts for the effects of the downstream portions of the bubble on those

upszream. In particular, along with the chord Reynolds number and the upstream development
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of the laminar boundary layer,the development of the bubble isfound to depend strongly on

the total amount of pressure which is to be recovered along the bubble. These variable flow

characteristics scale well with two dimensionless quantities, the Reynolds number based on

momentum thickness at the laminar separation point, (/i_=)s,ancl Gaster's pressure gradient

•parameter, 15

P_ 2 = R (a)
,_s n(s/c)

It should be noted that, while (R_=)s has been used in other models to account for decreasing

transition length with increasing _eynoids number, Gaster's parameter has been used in the past

only as a criterion of when reattachment of the short bubble is not possible and a long bubble

forms. Justification that the value of P has a strong influence on the transition process and other

aspects of the bubble development, such as the velocity plateau region of the bubble, is motivated

by the unsteady laminar simulation presented in Ref. 16. In this research, the criterion for the

"bursting" of short bubbles is found to correlate well with the boundary between steady and

unsteady reattachment of a laminar boundary layer subjected to an imposed pressure, gradient.

The unsteadiness is due to a periodic vortex-shedding which increases in frequency and intensity

as the value of Gaster's parameter increases. In view of the ellipticity of this recirculating flow

field, it is not too surprising that this frequency is found to correspond to the most unstable

frequency from a linear stability analysis of the laminar free shear layer. Thus, it is expected

that transition in such a flow field would be strongly dependent on the shedding frequency as

is characterized by the value of Gaster's parameter. Because the short separation bubble is

analogous to this unsteady reattachment process, it is reasonable that, in addition to (R_=)s,

the transition process should depend on the downstream reattachment of the turbulent shear

layer and the value of Gaster's pressure gradient parameter.

Starting with the inviscid velocity distribution over an airfoil, the scheme used by the

present method of predicting the development of laminar separation bubbles is summarized by

the flow diagrara shown in Fig. 3. As indicated, the bubble model is evoked when laminar

separation is predicted. At that point (R_=)s is determined and, based on the inviscid velocity

gradient at the laminar separation point, an initial estimate of Gaster's parameter, P, is made.

From the separation point, the velocity distribution in the plateau region is prescribed. The

function which•defines this distribution depends both on P and the matching of its slope to

that of the inviscid velocity distribution at the laminar separation point. Using the prescribed

velocity distribution over the laminar part of the bubble, the boundary-layer development is

accomplished using the momentum and energy integral equations, Eqs. (1) and (2), along with

appropriate closure relationships which, as will be described, were derived using the reverse-flow

velocity profiles developed by Green.it Likewise, these profiles were used to develop the criterion

used to predict transition in the f:ee shear layer. This criterion is also a function of (/_5=)s and

P. The turbulent part of the bubble and the undershoot region are determined by prescribing

the distribution of H32 and solving the integral boundary-layer equations in the inverse mode.

At this point, a local iteration is carried out to ensure that Horton's reattachment condition s

is satisfied for a velocity distribution in the non-equilibrium region of the bubble that merges

smoothly downstream with the inviscid velocity distribution. Once this iteration has converged,

a new value of P is calculated from the velocity gradient along the bubble as determined using

the points of laminar separation and the point where the bubble recovery first crosses the inviscid

distribution. With this new value of P, an outer iteration repeats the calculations indicated until

the overall length of the bubble no longer changes. It is through the two iteration schemes that

the influence of the downstream conditions in the bubble are communicated upstream.
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Fig. 3: Flow chart of computational scheme used to model laminar separation
bubbles in the flow over airfoils.

Details of the Laminar Separation Bubble Model

In the present procedure for modelling laminar separation bubbles, the laminar closure cor-

relations, the velocity distribution in the plateau region, transition, and the function describing

the undershoot region depend only on (R_)s and P. All other features of the bubble are de-

termined from the governing equations. The specific regions of the bubble model will now be
described.

Laminar Part of the Bubble

The Eppler and Somers program uses a very reliable criterion to detect laminar separation,

based on the value of the energy to momentum thickness shape factor,

(Hz:)s = 1.515095 (4)

This value is approached from above. Since the analysis method is formulated in the direct

mode, a small error is introduced in the prediction of the laminar separation point by the

presence of the Goldstein singularity. This causes the distribution of H32 to exhibit a very steep

slope immediately upstream of separation, which is a similar behavior to that of the skin-friction

coefficient. Furthermore, the direct formulation precludes any upstream influence of the bubble

on the pressure distribution. In the present version of the bubble model this local interaction

is neglected. Although possibly important for leading-edge bubbles, it should not have a major

impact on the development of mid-chord bubbles.
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Upon detection of laminar separation, the development of the separated laminar shear layer

is calculated using the same governing equations, the momentum and energy integral equations,

together with closure relations obtained from a family of reversed laminar velocity profiles.

Instead of implementing this boundary-layer method in the inverse mode as it is usually done,

the development of a family of pressure distributions in the laminar part of the bubble allows

its calculation in the direct mode.

The function used to approximate the pressure distribution in the laminar part of the bubble

is a generalization of that developed by van Lagen and Boermans and presented in Refs. 18 and

19,

--U--U= .978 + .022 exp(-4.454_ - 2.5_ 2) (5)
Us

where

 -ss (6)

This distribution, unlike the constar_t-pressure plateau used by Horton, allows a slight pressure

rise after laminar separation. Using detailed pressure distributions obtained from recent wind-

tunnel tests of the NASA NLF(1)-1015 airfoil 2° in the Low-Turbulence Pressure Tunnel at the

NASA Langley Research Center, the accuracy of Eq. (5) has been checked for several different

conditions. It is found that, when the overall pressure gradient along the bubble decreases, the

velocity distribution over the plateau region falls below that given by Eq. (5) while, when the

pressure gradient steepens, it rises above. To account for this effect, Eq. (5) is rewritten as

--U-U= (I - DU) + DU exp(-4.454_ - 2.5_ 2) (7)
Us

where DU is indicative of the amount of the pressure rise accomplished by the plateau velocity

distribution over the laminar part of the bubble. It is found to be well represented as a function

of the Gaster pressure gradient parameter, P. This functional relationship, shown in Fig. 4,

was developed by extracting corresponding values of DU and P directly from the experimental

pressure distributions of the NLF(1)-1015 and the Eppler E387 airfoils. 2°'21 The solid line is a

quadratic least-squares fit that has been included in the model,

DU = 0.0609691 + 0.304819P + 0.507176P 2 (8)

It should be noted that the value of DU = 0.022 used by van Ingen and Boermans falls in the

middle of the variation in DU shown in Fig. 4.

Upon examination of the velocity distributions obtained using Eqs. (6)-(8), it was noticed

that unlike in the experimental distributions, a discontinuity in the velocity gradient at the point

of laminar separation was present. Therefore, to match the gradients at laminar separation, an

additional variable is introduced into the velocity" distribution given by Eq. (7). Specifically,

the product [(.R_=)s(62)s] in Eq. (6) can be treated simply as a scaling factor between the
physical variable, s, and the universal dimensionless variable, _. Consequently, the value of this

scaling factor is determined as that which yields a velocity distribution in the laminar part of

the bubble whose gradient is continuous with the gradient of the inviscid velocity distribution

at separation.

Using the prescribed velocity distribution over the laminar part of the bubble, the develop-

ment of the separated laminar shear layer is calculated by means of the same governing equations

used for the rest of the boundary layer, the momentum and ener_y integral equations. Since 62

and 63 are obtained directly from the governing equations, the transition criterion is expressed



in terms of (H30.)r as a function of (R$2)s and P. A family of velocity profiles must likewise be

chosen to develop the closure correlations for H12(H_2), el(H32, R_.), and CD(Hz2, R_). The

correlations based on the reversed Falkner-Skan, or Stewartson, 22 profiles developed by Drela s

were originally included in the model. As discussed by Fitzgerald and Mueller, 23 however, recent

measurements inside the bubble show velocity profiles that are quite different from the Stewart-

son profiles and closer to the two-parameter profile family originally developed by Green. IT As

shown in Fig. 5, the two parameters, £/b and G, are linked to the geometrical characteristics

of the profiles. (h/b) is the ratio of the distance of the shear layer from the centerline of the

wake to the width of the shear layer and G is the amplitude of the Coles wake function. Since

there is slip along the centerhne of such a recirculating base flow, these profiles cannot be used

to develop a correlation for el. In view of the characteristicaIly small values of c/in the laminar

part of the bubble, however, this should not be a problem.

Fig. 4:
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NASA LaRC, June 1987; [] : E387 airfoil. 21

By applying the definitions for the integral thicknesses of the boundary layer and the dissi-

pation coefficient, relationships for Hi.,, H3=, and 1_2 CD as functions of h/b and G are obtained

for the Green profiles. The results are shown in Figs. 6 and 7 where these new two-parameter

correlations are compared to those developed by Drela from the Stewartson profiles. The solid

lines utilize the fitted variations of C and (h/b). As both H12 and H32 increase monotonically

between separation and transition, moving to greater values of the abscissa on these plots cor-

responds to moving downstream inside the bubble. Thus, both are similar to the Stewartson

correlations near separation but can be quite different further downstream. It appears from

the measurements that the back-flow, which is proportional to G, may be constant within each

bubble although different for different bubbles. From Fig. 6, the values of shape factors actually

measured, although different in absolute value, follow the same slope thus confirming a constant

value of back-flow velocity. These considerations.justify eliminating (h/b) between the expres-

sions for the shape factors and expressing the closure relationships in terms of H_, calculated
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from the governing equations, and G, whose behavior within each bubble can be correlated to

local flow conditions. Thus, the closure correlations are

I112 : 3(1-G)-H32
(I - G)(I - 2G) (9)

,_v 3 [ s c _ (4- sv)(1 - G)- (2- 3C)a'3_].R6_co= T 1- 2 4(1 G) YH-_-._ j (lO)

The unknown quantities in the boundary-layer method for the laminar part of the bubble

have been reduced to G and c I. Physically grounded assumptions can be made about the

dependence of these variables on local flow conditions. For instance, it seems reasonable to

expect that, as the pressure gradient along the bubble increases, so does the strength of the

recirculation and, therefore, -cf. In the present version of the model, however, G is related

to P such that (6_)s plays an important part in determining the ratio of reverse velocity to

forward boundary-layer edge velocity. The value of c I is held constant between separation and
transition.

Transition

The criterion for predicting transition in the free shear layer presently used was arrived at

only after establishing that the addition of a second parameter in the laminar reversed veloc-

ity profiles still did not provide the bubble model with enough generality. The Green profiles

correlations have been retained, however, as the present form of the transition criterion is be-

lieved to embody both the stability characteristics of free sheaz layers of varying velocity ratios

(varying amounts of back-flow) as well as the perhaps more important input from the unsteady

reattanhing turbulent shear layer.
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In the present separation bubble model, transition is predicted when a given value of the

shape factor, (Hs=)v, is achieved. As with other features of the bubble, (H32)T is taken to be

dependent on both (-R52)s and P. This relationship is

s75 - ](H32)T = 35000000p2 + 1800000P + 40000 + 1.515095
(11)

To explain the transition criterion, it is plotted together with the shear layer development on the

same plot that Eppler uses to describe the boundary-layer development. 7 Since H32 and R_: are

calculated at each point along the boundary layer, by connecting subsequent (H32,-_,)-pairs

on a plot whose axes correspond to these two variables, the boundary-layer development from

the stagnation point to the trailing edge can be described in a very concise way. Fig. S shows

one such boundary-layer development together with all the transition and separation criteria.
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Fig. 8: Modified Eppler boundary-layer development plot showing the

boundary-layer development inside the bubble•

Turbulent Part of the Bubble arid Rcattachrn_nt

An analysis recently completed by R. :Eppler that establ}shes the greatest possible pressure

recovery for an attached turbulent boundary ]ayer provided inspiration for developing a new

approach to the treatment of the turbulent part of the bubble• Given that the value as well as

the slope of the H32 distribution is always known at the transition and reattachment points,

a general function has been developed which allows the solution of the turbulent part of the

bubble in the inverse mode. The distribution of H32 is specified as
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sin( )

where
S--ST

The correspondingdistributionsof U(s) and 62 are obtainedfrom

dU Ha_c/- CD + 62H'. U
ds 6_H_(HI_ - i)

(12)

(_3)

(14)

d___! = 3c____/__+ _ + 2 (CD-- _;:) (lS)
ds H12 - i (H12 - 1)H32

where H_ 2 denotes the derivative with respect to s of Eq. (12). The closure relations for
separated and attached turbulent boundary layers developed by Drela 5 are used, enforcing

continuiW in Hz_ at transition.

In the expression defining the reattachment process, Eq. (12), there are two free constants,

12 and A, such that two additional conditions are necessary to achieve a unique solution. One

condition is that the undershoot merge smoothly with the inviscid velocity distribution. Simul-

taneously, the reattachment condition derived by Horton _ must be satisfied,

=- H3_(ttl_ - 1)Lu-_'_J_

The accuracy of the self-consistent reattachment process described above depends on the

choice of the function that represents the inpu{ Hz_ distribution and the value of (H32)_'.

As the value of H32 at the end of the undershoot, which depends on the amplitude A, does

not vary significantly with Keynolds number or pressure gradient, the function employed is

believed to provide a satisfactory approximation to the actual boundary-layer development in

the reattachment region as it is affected by the locaI interaction. Therefore, the only parameter

requiring further calibration is (H3_)_-. "Tl_e transition criterion, Eq. (11), can be refined by

matching predicted and measured pressure distributions. Having fixed (H3=)_-, the correct

dependence of G on P and, possibly, on (Rs:)s, can be determined by matching predicted and

measured transition lengths.

Predictions Based on the Present Bubble Model

At the present time, all of the components of the bubble model are in place with enough

flexibility to capture the physics for a wide range of conditions. It remains, however, to determine

the exact forms of the correlation functions that will "tune" the model to achieve the generality

and robustness that this wide range requires. With these qualifications in mind, the pressure

distribution for the Eppler E387 airfoil at an angle of attack of 1.5 degrees as predicted using

the Eppler and Somers program with the bubble model included is shown in Fig. 9. Also

included in _he figure is the distribution obtained with the Drela and Giles program, 6 with a

critical ampiification factor of 12, along with that of McGhee et al. -'1, both at 2 degrees. For

this case, the predicted pressure distributions agree reasonably well with one another and with

the experimental results. As expected, because this airfoil is not highly aft-loaded, the influence
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of viscous/inviscicl interactions is not strong. Consequently, outside of the bubble region the

inv]scid prediction is comparable to that oi_ the fully interactive method and, within the bubble

region, the local interactive calculation of the present model produces results which are very

close to those of the fully interactive method.

A comparison of the development of the boundary-layer properties for the E387 airfoil, Hi2,

52, Hz2, and cy, calculated using the present method with those obtained using the Drela and

Giles program are also presented in Fig. 9. As with the pressure distributions, the agreement

between the predictions obtained using the present bubble model w}th those of the fully inter-

active method is good. The apparent difference in bubble length may be due to the different

treatment of the transition region between the two methods. As in most transition prediction

methods based on linear stability, the critical amplification factor used in the Drela and Giles

program marks the beginning of the transition region while, in the present model, the transi-

tion point used corresponds to the end of this region and the beginning of the full turbulent

calculations. The difference in the distribution of Hz2 can be attributed to the difference in

pressure distributions in the laminar part of the bubble, shown in Fig. 9, as predicted by the

two methods. The steeper pressure gradient predicted by the present model leads to a larger

growth in 5= and, therefore, a smaller Hs2.
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The aerodynamic characteristics for the E387 airfoil, predicted using both the original and

the modified Eppler and Somers program, are given in Fig. 10. Clearly, the drag predicted with

the bubble model in use is much closer to the experimental values than that obtained without

it. In fact, the largest difference between the two that is observed is less than four counts. In

considering such plots, it should be noted that because the original program assumes tra_usition

at the laminar separation point, the width between the original transition development and that

obtained with the modified program is the length of the laminar part of the bubble.

-
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Fig. I0: Aerodynamic characteristics for the Eppter 387 airfoil obtained with

the original Eppler and Somers program compared with those ob-
tained using the program incorporating the present bubble model.
Experimental data is from Ref. 21.

Because of the strong viscous interaction due to the large amount of aft-loading present,

the NLF(1)-1015 airfoil represents a much more difficult case for the present method than does

the E387 airfoil. The pressure distribution for this airfoil at an angle of attack relative to

the chordline of -3.0 degrees is shown in Fig. i1. The greater impact of viscous interaction

in this case compared to the last is apparent. While it should be emphasized again that the

present model ha_ yet to be fully calibrated, it is seen in this case that the overall method does

seem to model the physical phenomenon sufficiently well to capture the two different bubble

developments that occur on this airfoil at this angle of attack.

Concluding Remarks

While its development is still in progress, the laminar separation bubble model described

seems to properly predict the behavior of the various parts of the bubble and possess the flex-

ibility required to work over a wide range of cases. For some cases, such as those in which the

viscous interactions greatly modify the inviscid pressure distribution, high accuracy in predict-

ing the drag and the influence of the bubble clearly requires a fully interactive method. For

many other cases, however, the present local interactive bubble model should provide a compu-

rationally efficient method which is well suited for the aerodynamic analysis which is required

during the process of airfoil design.
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